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Abstract

As it transitions to smaller scale, distributed hydrologic modeling approaches, the National Weather Service (NWS) is

improving methods of estimating parameters for the Sacramento Soil Moisture Accounting model (SAC-SMA). This is the

major hydrologic model used for flood forecasting at most of the 13 river forecasting centers throughout the United States. A

physically based approach based on the nationally available State Soil Geographic Database (STATSGO) has been developed

(Koren, V.I., Smith, M., Wang, D., Zhang, Z., 2000. Use of soil property data in the derivation of conceptual rainfall–runoff

model parameters. Proceedings of the 15th Conference on Hydrology, AMS, Long Beach, CA, pp. 103–106; Koren, V., Smith,

M., Duan, Q., 2003. Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall–runoff

models. In: Duan, Q., Sorooshian, S., Gupta, H., Rosseau, H., Turcotte, H. (Eds.), Calibration of Watershed Models, Water

Science and Applications 6, AGU, pp. 239–254), leading to objective, spatially consistent parameter estimates. This paper

shows that a better representation of basin physical properties and potential improvements in hydrologic simulation

performance can be obtained by basing parameter estimates on a finer-scale database of soils data, the Soil Survey Geographic

Database (SSURGO), combined with high-resolution land use/land cover data. Results also suggest that an intermediate level of

improvement may be obtained by combining detailed land cover data with STATSGO to refine current parameter estimates.

This latter finding is significant because the SSURGO data are not yet available for the entire country.
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1. Introduction

The National Weather Service (NWS) is in the

process of transitioning to smaller scale, distributed
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hydrologic modeling approaches to improve its river

and flash flood forecasting capabilities for the nation.

Part of this effort is improving a priori estimation of

model parameters for the Sacramento Soil Moisture

Accounting model (SAC-SMA; Burnash, 1995), the

major hydrologic model used for flood forecasting at

river forecasting centers throughout the United States.

Initial research within the Hydrology Laboratory of

the NWS Office of Hydrologic Development has

developed a groundbreaking approach that uses
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physical relationships to derive 11 major parameters

of SAC-SMA based on an available, nationwide

database of Geographic Information System (GIS)-

compatible soils property data, the State Soil

Geographic Database (STATSGO) (Koren et al.,

2000, 2003).

This paper attempts to improve upon this initial

parameter estimation methodology mainly by using

the finer-scale soils data available in the Soil Survey

Geographic Database (SSURGO). While not pre-

sently available as widely as STATSGO, generation

of SSURGO data is ongoing rapidly. Both datasets are

developed and maintained by the National Resource

Conservation Service (NRCS) of the United States

Department of Agriculture (USDA). Completion of

SSURGO data digitizing is scheduled for 2008, and in

the meantime many additional, ‘unofficial’, fine-scale

soils data sets may be obtained, often from state

natural resource agencies.

To our knowledge, only a few previous publi-

cations describe work comparing hydrologic simu-

lations using SSURGO-based vs. STATSGO-based

parameter estimates. Reed (1998) concluded that

outlet streamflow simulations for the Little Washita

watershed (600 km2) in Oklahoma were not much

different when using SSURGO-like data for par-

ameter estimation when compared with STATSGO-

based estimates. However, unlike some basins in this

study, the overall surface, soil–texture distributions

defined by SSURGO and STATSGO are similar in the

Little Washita. More recently, Peschel et al. (2003)

have added a SSURGO-based parameter estimation

capability to the USDA’s Soil and Water Assessment

Tool (SWAT). Although they showed that the use of

SSURGO data can produce significantly different

output, they did not make any conclusions about the

relative accuracy of the SSURGO-based vs.

STATSGO-based results.

The present work is important because for a

number of reasons there is an ongoing need to

improve a priori parameter estimation procedures

within NWS and in the larger hydrologic community.

First, the state-of-the-art of parameter estimation

within NWS and elsewhere still involves a large

role of subjective, expert assessment which limits

reproducibility of parameter estimates. Second,

traditional parameter estimation methods that rely

heavily on calibration with basin outlet streamflow
data become impossible to apply as one moves to finer

resolution, highly dimensioned, gridded models.

Third, the availability of objectively derived par-

ameter estimates over large areas can potentially

improve our understanding of spatially variable

hydrometeorological forcing errors, particularly

those inherent in radar-based precipitation products.
2. Approach and methods

2.1. Strategies for improvement of SAC-SMA

parameter estimation

This work is based on the premise that what is

needed is an objective estimation procedure that can

produce spatially consistent and physically reasonable

parameter estimates. In the current NWS approach,

initial estimates of model parameters are calculated

based on the STATSGO soils database, thereby

avoiding data quality problems of calibration based

on rainfall–discharge data and resulting in improved

spatial consistency (Koren et al., 2003). These

improved starting point values may then be adjusted

slightly, for example, by means of constrained

calibration within reduced bounds to account for

suboptimal magnitudes (e.g. Koren et al., 2003), or by

using a manual calibration process (e.g. Smith et al.,

2003). Adjustment of starting values was not

performed in the studies reported in this paper.

STATSGO soils-based estimates of SAC-SMA

parameters have been used extensively with generally

favorable results in various applications: the Dis-

tributed Model Intercomparison Project (DMIP,

Smith et al., 2004; Reed et al., 2004), the North-

American Land Data Assimilation System (NLDAS,

Cosgrove et al., 2003; Lohmann et al., 2004; Mitchell

et al., 2004), the experimental implementation of

variational assimilation of hydrologic and hydrome-

teorological data at the NWS West Gulf River

Forecast Center (WGRFC; Seo et al., 2003a,b), and

the field evaluation of the NWS Hydrology Labora-

tory Research Modeling System (HLRMS; Koren

et al., 2004; also known as the Distributed Hydrologic

Modeling System, DHMS).

Even so, a number of important limitations of this

current approach suggest that methodological

improvements could be obtained. First, STATSGO
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dominant soils texture grids for eleven soil layers for

the conterminous US are used (Miller et al., 1998).

However, STATSGO data, at a typical scale of

1:250,000, is intended for multi-state and regional

scale analysis. Soil polygons can be on the scale of

100–200 km2, leading to limitations on the resolution

of features (e.g. soil textures) below the scale of these

polygons. This limitation becomes undesirable as one

moves to smaller, distributed hydrologic modeling

scales. Second, the initial national a priori parameter

grids developed using the current approach did not

account for the range of land cover/land uses that

exist. Instead, throughout the US they assumed

‘pasture or range land use’ under ‘fair’ hydrologic

conditions (Koren et al., 2003). Third, the STATSGO

soil layers are defined only to a depth of 2.5 m, and

thus are unable to account for areas of deep

groundwater, which should affect estimates of lower

soil layer storages. Finally, texture–hydrologic prop-

erty relationships are subject to significant uncer-

tainty, which has not been investigated.

In this work, the first two limitations have been

directly addressed. The third limitation has been

partially addressed. The fourth limitation is not

addressed in this paper.

First, the soils data resolution issue is addressed by

using SSURGO data, which is typically available at a

scale of at least 1:24,000 (approximately 10 times the

resolution of STATSGO). Second, the land cover

issue is addressed by using the 1992 National Land

Cover Dataset (NLCD) available from the United

States Geological Survey (USGS), which contains

land cover data for the conterminous US at a

resolution of 30 m. Third, the issue of depth of data

measurements is partially addressed from a data

accuracy standpoint as follows: SSURGO data is

more precise than STATSGO to begin with, and, in

addition, available SSURGO data on the occurrence

of various soil column restrictions (e.g. fragipan

features, shallow bedrock) is used to supplement the

basic soil column data.

A procedure has been developed that implements

these improvements. The basic result is SSURGO-

based estimates of eleven SAC-SMA parameters that

also account for land cover based on the 30 m NLCD

data. The first main question that was addressed in this

work is the following: Does the use of SSURGO and

NLCD data lead to improved hydrologic simulation
performance? It was addressed based on a study of six

basins within the Ohio River Forecasting Center

(OHRFC) of the NWS, and included basins located in

West Virginia, Ohio, Kentucky, and Virginia.

A second main question addressed is as follows. In

the interim until a completed, national database of

SSURGO soils data is available, can incremental

improvement in hydrologic simulation performance be

obtained by supplementing STATSGO data with the

30 m NLCD data? This was addressed based on

analysis performed within the West Gulf River

Forecasting Center (WGRFC) of the NWS. The basins

studied in WGRFC were all in the state of Texas.

2.2. SAC-SMA structure and parameters

A detailed description of the SAC-SMA structure

and parameters can be found in Burnash (1995). SAC-

SMA represents the hydrologically active zone of the

soil conceptually as two layers, a thin upper layer and

usually much thicker lower layer. Each layer consists

of tension and free water storages that interact to

generate soil moisture states and a total of five

components of runoff. The free water (fast) com-

ponents are driven mostly by gravitational forces,

while the tension water (slow) components are driven

by evapotranspiration and diffusion. The free water

storage of the lower layer is divided into two sub-

storages: LZFSM, which controls supplemental (fast)

baseflow, and LZFPM, which controls primary (slow)

baseflow.

Partitioning of rainfall into surface runoff and

infiltration is constrained by upper layer soil moisture

conditions and the percolation potential of the lower

layer. No surface runoff occurs before the tension

water capacity of the upper layer, UZTWM, is filled.

After that, surface runoff generation is controlled by

the content of the upper layer free water storage,

UZFWM, and the deficiency of lower layer tension

water, LZTWM, and free water storages. Each free

water reservoir can generate runoff depending on a

depletion coefficient: UZK, for the upper layer, and

LZSK and LZPK for the lower layer supplementary

and primary storages, respectively. ZPERC is a ratio

of the maximum and minimum percolation rates, and

REXP is an exponent that governs the shape of the

percolation curve. Parameter PFREE expresses the

fractional split of percolated water between tension



Table 1

SAC-SMA parameters and their feasible ranges

No. Parameter Description Ranges

1 UZTWM The upper layer tension water capacity, mm 10–300

2 UZFWM The upper layer free water capacity, mm 5–150

3 UZK Interflow depletion rate from the upper layer free water storage,

dayK1

0.10–0.75

4 ZPERC Ratio of maximum and minimum percolation rates 5–350

5 REXP Shape parameter of the percolation curve 1–5

6 LZTWM The lower layer tension water capacity, mm 10–500

7 LZFSM The lower layer supplemental free water capacity, mm 5–400

8 LZFPM The lower layer primary free water capacity, mm 10–1000

9 LZSK Depletion rate of the lower layer supplemental free water storage,

dayK1

0.01–0.35

10 LZPK Depletion rate of the lower layer primary free water storage, dayK1 0.001–0.05

11 PFREE Percolation fraction that goes directly to the lower layer free water

storages

0.0–0.8

12 PCTIM Permanent impervious area fraction

13 ADIMP Maximum fraction of an additional impervious area due to

saturation

14 RIVA Riparian vegetarian area fraction

15 SIDE Ratio of deep percolation from lower layer free water storages

16 RSERV Fraction of lower layer free water not transferable to lower layer

tension water

Italics indicate the 11 parameters estimated by our methodology.
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and free water storages of the lower layer. Table 1

contains a list of all sixteen SAC-SMA parameters,

and highlights the eleven mentioned here, which are

estimated by our methodology.
2.3. Soil texture and SAC-SMA parameter

relationships

Koren et al. (2000) assumed that tension water

component storages of SAC-SMA are related to plant-

extractable soil moisture, while free water com-

ponents are related to gravitational soil moisture.

Plant-extractable and gravitational soil moisture can

be derived from soil properties such as saturated

moisture content qs, field capacity qfld, and wilting

point qwp.

Occurrence of these soil properties directly in

SSURGO data is unpredictable (data records in these

fields are frequently unpopulated), so the approach

derived by Koren et al. (2000) is used here as well.

They estimated these properties by using STATSGO

dominant texture grids available for eleven soil

layers (from ground surface to 2.5 m depth) for

the conterminous US (Miller et al., 1998). To do so,
the percentages of sand and clay were obtained

from the midpoint values of each textural class using

the USDA textural triangle, and these were related to

soil properties using regression equations from Cosby

et al. (1984). Experimental data reported by Clapp and

Hornberger (1978) were used to estimate saturated

hydraulic conductivity Ks, while an empirical

relationship from Armstrong (1978) was used to

estimate specific yield m. These relationships are

reported in Koren et al. (2003). Thus once soil texture

is known, it becomes possible to determine associated

physical properties. In our improved methodology,

more precise and, we propose, more accurate texture

data are obtained from the SSURGO database. The

physical properties are reported for each texture class

in Table 2.

To relate SAC-SMA parameters to soil-derived

physical properties, model component storages

expressed in water depth are converted to actual

depths within the soil profile. Depth of the entire soil

profile, Zmax, is obtained from SSURGO data and

estimated as the combined depth of both SAC-SMA

soil layers. The split between upper and lower soil

layers, Zup, is determined by making use of the



Table 2

The physical properties corresponding to the 12 basic USDA soil textures

Texture Sand (%) Clay (%) qs qfld qwp Ks (mm/h) m

S 92 3 0.37 0.15 0.04 634.6 0.29

LS 82 6 0.39 0.19 0.05 562.6 0.23

SL 58 10 0.42 0.27 0.09 124.8 0.15

SIL 17 13 0.47 0.35 0.15 25.9 0.10

SI 9 5 0.48 0.34 0.11 20.0 0.12

L 43 18 0.44 0.30 0.14 25.0 0.13

SCL 58 27 0.42 0.29 0.16 22.7 0.12

SICL 10 34 0.48 0.41 0.24 6.1 0.04

CL 32 34 0.45 0.36 0.21 8.8 0.07

SC 52 42 0.42 0.33 0.21 7.8 0.07

SIC 6 47 0.48 0.43 0.28 3.7 0.02

C 22 58 0.46 0.40 0.28 4.6 0.03
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concept of an initial rain abstraction from the curve

number method developed by the Natural Resources

Conservation Service (NRCS) (McCuen, 1998). In the

curve number method, the amount of initial rainfall

that does not reach the stream channel (the initial

abstraction) is estimated as a function of soil and

vegetation type, as well as hydrologic condition and

antecedent moisture status. Koren et al. (2000)

assumed an antecedent soil moisture condition in

which the SAC-SMA upper layer tension water

storage is full and the free water storage is empty.

In this case, the initial rain abstraction should fill the

upper layer free water storage, leading to an equation

relating UZFWM to Zup. Thus,

UZFWM Z ðqsKqfldÞZup (1)

in terms of millimeters of water depth, where, based

on the curve number method

Zup Z 5:08!
1000=CNK10

qsKqfld

(2)

in terms of millimeters of soil depth. In (2) the

numerator of the expression for Zup expresses the

initial abstraction in water depth, while the denomi-

nator with volumetric units of mm water/mm soil

converts the final expression into depth within the soil

profile. Koren et al. (2000) showed how these

assumptions lead to estimates for other SAC-SMA

storages UZTWM, LZTWM, LZFSM, and LZFPM in

terms of soil porosity, field capacity, and wilting

point. Darcy’s equation for an unconfined, hom-

ogenous aquifer was used to develop an expression for

lower layer depletion rate, LZPK (Dingman, 2002).
ZPERC was estimated from other known SAC-SMA

parameters, assuming that maximum percolation

occurs when the upper layer is fully saturated and

the lower layer is dry. Estimates for UZK, LZSK,

REXP, and PFREE relied upon using ratios of field

capacity (qfld/qs) and wilting point (qwp/qs) as

integrated indices of soil properties, modified by an

exponent n that is estimated empirically. A summary

of our parameter estimation methodology as well as

the equations for all eleven estimated parameters are

listed in Appendix A.
3. Description of tests performed and study areas
3.1. Improvement of hydrologic simulation

performance using SSURGO data

Six basins were chosen within the Ohio River

Forecasting Center domain (OHRFC), for which both

coarse-scale (STATSGO) and fine-scale (SSURGO)

data are available. The basins are in Kentucky, Ohio,

West Virginia, and Virginia. See Table 3 for

descriptive information on these six basins. Fig. 1

contains a map of the basin locations. Parameter

values were estimated, averaged to the scale of the

basin, and SAC-SMA was run in lumped mode. The

analysis period was limited by the extent of the data

record. Comparison of hydrograph statistics was

conducted to determine if SSURGO data led to

improved performance relative to STATSGO, and, if

so, if this performance was qualitatively significant.



Table 3

List of basins analyzed in Ohio River Forecasting Center

No. Name USGS ID No. Analysis period Gage elevation (m)

(NGVD, 1929)

Basin area (km2)

1 Tygert Valley R.

near Dailey, WV

03050000 10/1965–09/1975 560.8 479.1

2 Shavers Fork below

Bowden, WV

03068800 09/1973–09/1981 646.2 391.1

3 Deer Creek at Mt

Sterling, OH

03230800 10/1966–09/1981 254.9 590.5

4 Tug Fork at Welch,

WV

03212750 10/1985–09/1993 386.5 450.7

5 Dry Fork at Bear-

town, WV

03212980 10/1985–09/1993 321.9 541.3

6 Johns Creek near

Meta, KY

03210000 10/1983–09/1993 218.8 145.8
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3.2. Using 30 m NLCD data to improve

STATSGO-based estimates

Comparison of curve number estimates was

conducted for NLCDCSSURGO, NLCDC
STATSGO, and generic land useCSTATSGO data

for the West Gulf River Forecasting Center

(WGRFC), which consists largely of the state of

Texas. This region was chosen to perform additional

analyses comparing STATSGO to SSURGO perform-

ance since it represents a very different region from

that of OHRFC. Rather than an analysis of a particular

basin, curve number maps were generated for
Fig. 1. Locations for analyzed basins within Ohio River Forecasting C
a county or soil survey area. Three Texas counties

were examined: Borden County (2346 km2) in north-

west Texas, and Hamilton (2167 km2) and William-

son (2936 km2) counties in southeast Texas. Madison

County in Ohio (1210 km2) was also examined. This

anticipates potentially generating large regions of

improved curve numbers, which could then in turn

lead to improved SAC-SMA parameters for basins of

variable size.

The assumption in supplementing STATSGO data

with the NLCD land cover data is that SSURGO data

with its fine-scaled information on hydrologic soil

group is not available. STATSGO does contain
enters. Basin outlets (triangles) and basin numbers are shown.
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information on hydrologic soil group, but it is at a

much coarser scale to begin with, and also only gives

the percentage of each of four hydrologic groups (A,

B, C, D) within a map unit. In contrast, SSURGO soil

map units are assigned a single hydrologic soil group.

To generate the NLCDCSTATSGO-based curve

number estimates, four curve number grids were

generated at 30 m resolution, one for each of the four

hydrologic soil groups. These grids were then averaged

to the scale of the STATSGO polygons and weighted

by hydrologic soil group percentage to give the final

curve number for each STATSGO polygon.
4. Results and discussion

4.1. Improvement of hydrologic simulation

performance using SSURGO data

Improvement in estimation of SAC-SMA par-

ameters was seen for two of the three OHRFC basins

for which there was a significant difference in

distribution of soil textures as measured by SSURGO

vs. STATSGO data. This improvement is seen in

terms of: (1) error statistics calculated based on

comparing observed to simulated flows; and (2)

recession behavior based on visual hydrograph

comparisons of observed and simulated flows.

Depictions of the texture distributions based on the

uppermost soil layer (thickness approximately 10–

20 cm for SSURGO, 5 cm for the Miller and White

(1998) gridded STATSGO) revealed that hydrologic

simulation performance was noticeably different for

(1) Deer Creek at Mt Sterling, where SSURGO clay

textures were much more broadly distributed than

measured by STATSGO, representing greater occur-

rence of a texture with a significant qualitative

difference; (2) Shavers Fork below Bowden, where

SSURGO loamy textures were more broadly dis-

tributed than measured by STATSGO, representing a

significant quantitative difference of loamy soils; and

(3) Johns Creek near Meta, where, unlike STATSGO,

loamy and sandy loam SSURGO textures are

interspersed in a regular pattern (Fig. 2). In contrast,

for other basins where the overall distribution of

surface textures for SSURGO vs. STATSGO was

relatively similar little difference in hydrologic

simulation performance was observed.
Statistical improvement in terms of hydrologic

simulation performance was seen most clearly in

terms of a statistic that calculates the root mean square

error for hydrographs of the twelve largest storms

within the simulation period—a flood root mean

square error (FDRMS) (Table 4). For example, for

three basins with little difference in texture distri-

bution for STATSGO vs. SSURGO (Tygert Valley

River, Tug Fork at Welch, Dry Fork at Beartown),

FDRMS went from 46.7 to 48.0%, 31.5 to 33.6%, and

from 35.7 to 35.3%, respectively, going from

STATSGO to SSURGO. This is interpreted as being

essentially no change. In contrast, for two of the three

basins mentioned above with significant difference in

texture distribution for STATSGO vs. SSURGO

(Shavers Fork below Bowden, Deer Creek at Mt.

Sterling), FDRMS went from 50.8 to 45.9% and from

66.3 to 52.9%, respectively, going from STATSGO to

SSURGO. Thus FDRMS decreased when SSURGO

data was used to estimate SAC-SMA parameters,

indicating the greater accuracy of SSURGO-based

parameter estimates. A similar pattern was seen for

daily root mean square error (DRMS), monthly

volume root mean square error (MVRMS), and

correlation coefficient R.

Note that Johns Creek near Meta does not fit this

pattern, since FDRMS increases from 49.8 to 59.0%

going from STATSGO to SSURGO. This suggests

that there may be additional factors besides surface

texture (e.g. texture at lower depths) that account for

SAC-SMA parameter differences. This is consistent

with Table 5, which shows that differences in surface

texture have translated into relatively large differ-

ences in parameters LZFSM and LZSK for Shavers

Fork below Bowden and Deer Creek at Mt Sterling

compared to Johns Creek near Meta. In addition to

parameter differences, consequent differences in

hydrologic simulation performance may also be

driven by forcing errors. An issue with Johns Creek

is that it is the smallest basin and thus the radar rainfall

data used is the most error prone.

Improvement in terms of visual hydrograph

comparisons was most clearly apparent when hydro-

graphs were examined using a log-linear scale, since

this depicts recession behavior better (Fig. 3). Here, it

was again evident that there was improvement for

Shavers Fork below Bowden and Deer Creek at Mt

Sterling. For Deer Creek at Mt Sterling long term



Fig. 2. Comparison of soil textures: STATSGO (left column) vs. SSURGO (right column).
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Table 4

Comparison of accuracy statistics of hydrographs: SSURGO vs. STATSGO data

Basin DRMS (cm) MVRMS (mm) BIAS (%) FDRMS (%) R

SSURGO Tygert Valley R. 9.1 14.8 K14.2 48.0 0.87

Shavers Fork 9.0 21.5 K3.6 45.9 0.84

Deer Creek 7.4 14.8 K18.8 52.9 0.84

Tug Fork 4.5 11.2 K6.8 33.6 0.85

Dry Fork 5.3 9.0 2.8 35.3 0.87

Johns Creek 2.4 14.4 8.9 59.0 0.78

STATSGO Tygert Valley R. 8.7 14.8 K14.1 46.7 0.88

Shavers Fork 10.2 22.6 K3.4 50.8 0.81

Deer Creek 8.7 18.7 K22.5 66.3 0.80

Tug Fork 4.6 10.4 K10.3 31.5 0.83

Dry Fork 5.2 8.1 K1.6 35.7 0.87

Johns Creek 2.4 15.2 12.9 49.8 0.80
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recession behavior was observed to be much better,

while for Shavers Fork below Bowden short-term

recession behavior was much better for SSURGO-

based parameter estimates vs. STATSGO. This

difference in performance could be attributed to the

estimates for the lower layer supplemental free water

storage parameter LZFSM, which for SSURGO vs.

STATSGO are much more different for these two

basins than for the others (Fig. 4). The depletion rate

coefficient for the lower layer supplemental free water

storage LZSK may also be making some contribution.

In conclusion, this result again indicates that

SSURGO-based parameters are more accurate.

Note that in making these SSURGO vs. STATSGO

parameter and hydrologic simulation performance

comparisons, SSURGO parameter values were avail-

able at the resolution of SSURGO soil polygons, which

is much finer than STATSGO polygons (as discussed

above.) To make this comparison, both SSURGO and

STATSGO parameter values were averaged at the

scale of the analyzed basins, and SAC-SMA runs were

made using the lumped version of the model.

Significant differences in lumped parameter values

were often observed for SSURGO vs. STATSGO

(Table 5). However, it is when the SSURGO-based

approach is used in new, ongoing, NWS distributed

modeling applications (Koren et al., 2004) that the

greatest benefit of using the fine-scaled SSURGO data

is expected to be obtained. As an example, Fig. 5

compares SAC-SMA parameter LZFSM derived at

SSURGO and STATSGO resolutions for Shavers Fork

below Bowden and shows significant differences in the
spatially distributed values. Though the difference in

basin-averaged mean is only approximately 5 mm, the

root mean square error (RMSE) is more than two times

larger, at 13.4 mm.
4.2. Using 30 m NLCD data to improve

STATSGO-based estimates

Improvement in estimation of curve number was

observed for all examined soil survey areas when

30 m NLCD data was used with STATSGO, as

opposed to when generic ‘pasture or range land use’

was used. This improvement could be seen in that

NLCDCSTATSGO-based curve number estimates

were more similar to NLCDCSSURGO-based curve

number estimates than were those assuming generic

land use. Table 6 reports curve number statistics for

Borden, Hamilton, and Williamson counties, Texas

(within WGRFC), and Madison County, Ohio (within

OHRFC). NLCDCSTATSGO-based curve number

estimates should always be at least as accurate as

generic land use-based estimates. However, they will

have less accuracy relative to NLCDCSSURGO-

based curve numbers, which are accurate to the scale

of the 30 m land cover data or SSURGO polygons

(which are mapped at a comparable scale to the land

cover data).

In future applications where SSURGO soils data is

not available, incremental improvement in SAC-SMA

parameter estimates could be obtained by using the

NLCDCSTATSGO-based curve number estimates.

This improvement would likely only be incremental



Table 5

Comparison of basin-averaged parameters: SSURGO vs. STATSGO data

Parameter Tygert Valley R. Shavers Fork Deer Creek Tug Fork Dry Fork Johns Creek

SSURGO

Lztwm 125 144 202 119 117 166

Lzfsm 16 18 31 22 21 20

Lzfpm 74 95 101 73 72 110

Lzsk 0.16 0.17 0.15 0.14 0.14 0.16

Lzpk 0.005 0.010 0.005 0.007 0.007 0.009

Pfree 0.18 0.16 0.24 0.23 0.23 0.15

Uztwm 81 50 55 69 72 64

Uzfwm 57 37 29 54 54 52

Uzk 0.40 0.43 0.32 0.39 0.39 0.45

Zperc 78 70 64 59 62 71

Rexp 2.23 2.17 2.80 1.81 1.89 1.74

STATSGO

Lztwm 134 118 234 160 167 157

Lzfsm 17 11 37 23 24 22

Lzfpm 67 61 148 120 118 116

Lzsk 0.09 0.10 0.09 0.12 0.11 0.12

Lzpk 0.004 0.006 0.007 0.005 0.005 0.005

Pfree 0.22 0.17 0.20 0.16 0.18 0.16

Uztwm 67 83 49 43 46 42

Uzfwm 40 58 28 39 39 37

Uzk 0.36 0.40 0.36 0.46 0.44 0.46

Zperc 118 127 94 90 92 92

Rexp 2.24 2.05 2.19 2.02 2.09 2.02

Percent difference by parameter

Lztwm K7 18 K16 K34 K43 6

Lzfsm K7 37 K20 K6 K18 K12

Lzfpm 10 35 K46 K63 K65 K6

Lzsk 40 41 39 18 21 28

Lzpk 20 39 K30 32 29 47

Pfree K19 K6 14 30 22 K8

Uztwm 17 K67 11 38 37 35

Uzfwm 30 K57 4 28 29 28

Uzk 10 7 K13 K18 K15 K1

Zperc K52 K81 K46 K52 K47 K29

Rexp 0 6 22 K12 K10 K16

Average 91 106 114 109 113 85
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since, as we have seen, the texture information in the

STATSGO data may not be as accurate as in the

SSURGO data. In the parameter estimation pro-

cedure, the curve number leads to the estimate of the

depth of water to be allocated to the upper and lower

zones, while the textures determine primarily how that

water is split between tension and free water storages.

Thus differences between SSURGO and STATSGO-

based performance are driven by differences in curve

numbers and initial rain abstraction and by accuracy

in texture distributions.
The possibility of computing these improved,

NLCDCSTATSGO-based curve number estimates

also suggests a useful future project might be to

generate these estimates for the entire US, or for large

or specially chosen regional studies within the US.
5. Summary

A number of conclusions may be drawn from this

work. First, hydrologic simulation results suggest that



Fig. 3. Comparison of Hydrographs for STATSGO vs. SSURGO data: Deer Creek at Mt Sterling (left panel); Shavers Fork below Bowden (right panel). Note log-linear scale on

lower plots in left and right panels.

R
.M

.
A

n
d

erso
n

et
a

l.
/

Jo
u

rn
a

l
o

f
H

yd
ro

lo
g

y
3

2
0

(2
0

0
6

)
1

0
3

–
1

1
6

1
1

3



Fig. 4. Comparison of SAC-SMA parameters for STATSGO vs. SSURGO.

Fig. 5. Comparison of resolution of SAC-SMA parameter LZFSM

for STATSGO (top left panel) vs. SSURGO (top right panel) for

Shavers Fork below Bowden.
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higher resolution, SSURGO-based parameter esti-

mates can significantly improve flood prediction.

Simulations generated using SSURGO-based par-

ameter estimates compared favorably with simu-

lations using STATSGO-based parameters in two

basins, and, just as important, results in three of the

other four basins tested were not significantly

degraded by using the higher resolution data. Second,

STATSGO data can lead to significant biases in model

parameters, even for medium-sized basins such as the

ones studied here. Smaller basins would be expected

to have worse biases, since in those cases it becomes

more likely that the correct textures are missed

entirely. Third, combination of high resolution

NLCD data and lower resolution STATSGO texture

data can be used as a transitional option before

SSURGO data become available throughout the entire

US. Fourth, the fact that simulation improvements are

seen when using more accurate, higher resolution data

lends credence to the theory that is used to translate

basic soil/land use data into hydrologic model

parameters. Future work should include similar

analyses on a larger sample of basins to validate and



Table 6

Comparison of curve number estimates for NLCDCSSURGO,

NLCDCSTATSGO, and Generic land useCSTATSGO estimates

NLCDC

SSURGO

NLCDC

STATSGO

Generic land

useC

STATSGO

Borden County, Texas

Average

(std dev.)

70.1 (4.32) 69.2 (5.24) 56.1 (4.97)

Difference of

Avgs

0.9 14

Hamilton County, Texas

Average

(std dev.)

69.4 (3.21) 70.1 (4.27) 64.3 (4.53)

Difference of

Avgs

-0.7 5.1

Williamson County, Texas

Average

(std dev.)

74.5 (3.02) 72.6 (8.10) 66.2 (7.34)

Difference of

Avgs

1.9 8.3

Madison County, Ohio

Average

(std dev.)

68.9 (1.13) 71.6 (1.93) 64.4 (1.85)

Difference of

Avgs

-2.7 4.5
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strengthen our conclusions. Fifth, SSURGO data

provide much finer spatial representation of a priori

SAC-SMA parameters, which may be critical in high

resolution, distributed modeling. SSURGO data

spatially resolves information at flash flood basin

scales, while STATGSO does not.
Acknowledgements

The authors thank two anonymous reviewers as

well as M. Smith and F. Moreda of the Hydrology

Laboratory, all of whose comments led to improve-

ment of this paper.
Appendix A. Procedure to calculate SAC-SMA

a priori parameters

SSURGO data containing information on soil

texture, soil layer structure, and hydrologic soil

group may be downloaded from the NRCS website
of the USDA at http://www.ncgc.nrcs.usda.gov/

branch/ssb/products/ssurgo/. The latest data format

has a National Soil Information System (NASIS)

attribute structure that can be imported into a

Microsoft Access Template Database, available at

http://nasis.nrcs.usda.gov/downloads/. Land cover

data for the conterminous US at 30 m grid resolution

are available from the US Geological Survey at http://

landcover.usgs.gov/natllandcover.asp. Arcview GIS

software (ESRI, 1996) is used to process the spatial

and attribute data and calculate SAC-SMA parameter

estimates, resulting in maps of soil polygons where a

value for each model parameter for each polygon has

been added to the associated attribute table. These

polygons may then be readily transformed to grids

(raster data) at any resolution for any SAC-SMA

parameter of interest.

Below are the SAC-SMA parameter and soil

property relationships as they appeared in Koren

et al. (2003), except for (A8) which contains a

slight correction: p has become p2 and Ds has

become D2
s .

Upper layer parameters:

UZTWM Z ðqfld KqwpÞZup (A1)

UZFWM Z ðqsKqfldÞZup (A2)

UZK Z 1Kðqfld=qsÞ
n (A3)

Lower layer parameters:

LZTWM Z ðqfld KqwpÞðZmax KZupÞ (A4)

LZFSM Z ðqsKqfldÞðZmax KZupÞðqwp=qsÞ
n (A5)

LZFPM ZðqsKqfldÞðZmax KZupÞ

!½1Kðqwp=qsÞ
n� ðA6)

LZSK Z
1Kðqfld=qsÞ

n

1 C2ð1KqwpÞ
(A7)

LZPK Z 1Kexp K
p2KsD

2
s ðZmaxKZupÞDt

m

� �
(A8)

PFREE Z ðqwp=qsÞ
n (A9)

http://www.ncgc.nrcs.usda.gov/branch/ssb/products/ssurgo/
http://www.ncgc.nrcs.usda.gov/branch/ssb/products/ssurgo/
http://nasis.nrcs.usda.gov/downloads/
http://landcover.usgs.gov/natllandcover.asp
http://landcover.usgs.gov/natllandcover.asp
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ZPERC

Z
LZTWMCLZFSMð1KLZSKÞCLZFPMð1KLZPKÞ

LZFSM!LZSKCLZFPM!LZPK
ðA10)

Percolation parameters:

REXP Z ½qwp=ðqwp;sand K0:001Þ�0:5 (A11)

Upper layer thickness:

Zup Z 5:08!
1000=CNK10

qsKqfld

(A12)
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